

BFW16A BFW17A

CATV-MATV AMPLIFIERS

DESCRIPTION

The BFW 16A and BFW 17A are multi-emitter silicon planar epitaxial NPN transistors in Jedec TO-39 metal case, with extremely good intermodulation properties and high power gain. They are primarily intended for final and driver stages in channel-and band-aerial amplifiers with high output power from 40 to 860 MHz.

Another possible application is as the final stage of the wide band vertical amplifier in high speed oscilloscopes.

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base Voltage $(I_E = 0)$	40	V
V _{CER}	Collector-emitter Voltage ($R_{BE} \leq 50 \Omega$)	40	V
V _{CEO}	Collector-emitter Voltage $(I_B = 0)$	25	V
V _{EBO}	Emitter-base Voltage $(I_{C} = 0)$	3	V
Ι _C	Collector Current	150	mA
I _{CM}	Collector Peak Current	300	mA
P _{tot}	Total Power Dissipation at $T_{amb} \le 25$ °C at $T_{case} \le 125$ °C	0.7 1.5	W W
T _{stg} , T _j	Storage and Junction Temperature	- 65 to 200	°C

ABSOLUTE MAXIMUM RATINGS

THERMAL DATA

R _{th j-case}	Thermal Resistance Junction-case	Max	50	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	250	°C/W

ELECTRICAL CHARACTERISTICS (T_{amb} = 25 $^{\circ}$ C unless otherwise specified)

Symbol	Parameter	Test Cor	Min.	Тур.	Max.	Unit	
I _{CBO}	Collector Cutoff Current $(I_E = 0)$	V _{CB} = 20 V	$T_{amb} = 150 \ ^{\circ}C$			20	μΑ
V _{(BR)EBO}	Emitter-base Breakdown Voltage (I _C = 0)	I _E = 100 μA		3			V
V _{CEK} */**	Collector-emitter Knee Voltage	I _C = 100 mA				0.75	V
h _{FE} *	DC Current Gain	I _C = 50 mA I _C = 150 mA	$V_{CE} = 5 V$ $V_{CE} = 5 V$	25 25			
f⊤	Transition Frequency	l _C = 150 mA f = 500 MHz	V _{CE} = 15 V for BFW 16A		1.2		GHz
			for BFW 17A		1.1		GHz
Ссво	Collector-base Capacitance	I _E = 0 f = 1 MHz	V _{CB} = 15 V			4	pF
C _{re}	Reverse Capacitance	I _C = 10 mA f = 1 MHz	$V_{CE} = 15 V$		1.7		pF
NF	Noise Figure (for BFW 16A only)	I _C = 30 mA R _g = 75 Ω	V _{CE} = 15 V f = 200 MHz			6	dB
G _{pe}	Power Gain (not neutralized)	I _C = 70 mA f = 200 MHz	V _{CE} = 18 V		10		
		f = 800 MHz			16		aв
		For BFW 16A only			6.5		dB
P ₀	Output Power	I _C = 70 mA Channel 9 ⁽¹⁾	V _{CE} = 18 V				
			for BFW 16A	130	150		mW
		Channel CO(2)	for BFW 17A		150		mW
		For BFV	V 16A only	70	90		mW

* Pulsed : pulse duration = 300 μ s, duty cycle = 1 %. ** I_B = value for which I_C = 110 mA at V_{CE} = 1V. (1) f_p = 202 MHz, f_q = 205 MHz, f_(2q - p) = 208 MHz. (2) f_p = 798 MHz, f_q = 802 MHz, f_(2q - p) = 806 MHz.

TEST CIRCUIT

Test Circuit for Power Gain and Output Power Measurements (f = 200 MHz).

High Frequency Current Gain.

Input Impedance S_{11e} (normalized 50 Ω).

Reverse Capacitance.

Forward Transfer Coefficient S_{21e}.

Reverse Transfer Coefficient S_{12e}.

Output Impedance S_{22e} (normalized 50 Ω).

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	12.7			0.500			
В			0.49			0.019	
D			6.6			0.260	
E			8.5			0.334	
F			9.4			0.370	
G	5.08			0.200			
Н			1.2			0.047	
I			0.9			0.035	
L	45° (typ.)						

TO39 MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

